Hepa1-6-FLuc cell line with the stable expression of firefly luciferase retains its primary properties with promising bioluminescence imaging ability
نویسندگان
چکیده
Reliable animal models are required for the in vivo study of the molecular mechanisms and effects of chemotherapeutic drugs in hepatocarcinoma. In vivo tracing techniques based on firefly luciferase (FLuc) may optimize the non-invasive monitoring of experimental animals. The present study established a murine Hepa1-6-FLuc cell line that stably expressed a retrovirus-delivered FLuc protein gene. The cell morphology, proliferation, migration and invasion ability of Hepa1-6-FLuc cells were the same as that of the Hepa1-6 cells, and thus is suitable to replace Hepa1-6 cells in the construction of hepatocarcinoma animal models. No differences in subcutaneous tumor mass and its pathomorphology from implanted Hepa1-6-FLuc cells were observed compared with Hepa1-6 control tumors. Bioluminescence imaging indicated that the Luc signal of the Hepa1-6-FLuc cells was consistently strengthened with increases in tumor mass; however, the Luc signal of Hepa1-6-AdFLuc became weaker and eventually disappeared during tumor development. Therefore, compared with the transient expression by adenovirus, stable expression of the FLuc gene in Hepa1-6 cells may better reflect cell proliferation and survival in vivo, and provide a reliable source for the establishment of hepatocarcinoma models.
منابع مشابه
Photoactivable bioluminescent probes for imaging luciferase activityw
The firefly luciferase (fLuc) has been widely utilized for optical reporter gene imaging in biochemical assays, cell culture and living animals. fLuc can catalyze the oxidation of its substrate D-luciferin in the presence of O2, ATP, and Mg 2+ to generate the bioluminescence that can be imaged by a CCD camera. The luciferase based bioluminescence imaging technique displays low background and hi...
متن کاملFirefly Luciferase and Rluc8 Exhibit Differential Sensitivity to Oxidative Stress in Apoptotic Cells
Over the past decade, firefly Luciferase (fLuc) has been used in a wide range of biological assays, providing insight into gene regulation, protein-protein interactions, cell proliferation, and cell migration. However, it has also been well established that fLuc activity can be highly sensitive to its surrounding environment. In this study, we found that when various cancer cell lines (HeLa, MC...
متن کاملEnhanced Beetle Luciferase for High-Resolution Bioluminescence Imaging
We developed an enhanced green-emitting luciferase (ELuc) to be used as a bioluminescence imaging (BLI) probe. ELuc exhibits a light signal in mammalian cells that is over 10-fold stronger than that of the firefly luciferase (FLuc), which is the most widely used luciferase reporter gene. We showed that ELuc produces a strong light signal in primary cells and tissues and that it enables the visu...
متن کاملEstablishment of Green Fluorescent Protein and Firefly Luciferase Expressing Mouse Primary Macrophages for In Vivo Bioluminescence Imaging
Macrophages play a key role in tissue homeostasis as well as in a range of pathological conditions including atherosclerosis, cancer, and autoimmunity. Many aspects of their in vivo behavior are, however, poorly understood. Bioluminescence imaging (BLI) with green fluorescent protein (GFP) and firefly luciferase (FLUC) labelled autologous reporter macrophages could potentially offer a powerful ...
متن کاملIn-depth Characterization of Firefly Luciferase as a Reporter of Circadian Gene Expression in Mammalian Cells
Firefly luciferase (Fluc) is frequently used to report circadian gene expression rhythms in mammalian cells and tissues. During longitudinal assays it is generally assumed that enzymatic substrates are in saturating excess, such that total bioluminescence is directly proportional to Fluc protein level. To test this assumption, we compared the enzyme kinetics of purified luciferase with its acti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 15 شماره
صفحات -
تاریخ انتشار 2018